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Abstract. Binary mixtures show many kinds of fascinating dynamical behaviour 
which has eluded microscopic description till very recently. In this work we show 
that much of the anomalous behaviour can be explained by building suitable models 
and carrying out theoretical and simulation studies. Specifically, three well-known 
problems have been addressed here. (a) Non-ideality in composition dependence of 
viscosity, (b) re-entrant behaviour of orientational relaxation, and (c) heterogeneity 
in supercooled binary mixtures. The physical origin of the dynamical behaviour of 
binary mixtures can be understood in terms of composition fluctuation, a study of 
which has also been presented in this paper. 
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fluctuation. 

1. Introduction 

Binary mixtures are ubiquitous in chemistry. Most chemical solvents are multi-
component and in particular binary. In a binary mixture, by altering the composition of 
one of the ingredients one can change solubility, polarisability, viscosity and many 
other static and dynamic properties. This tunability is of great use in chemistry. 
Although the static and dynamic properties of many mixtures are well characterized, a 
general theoretical framework to understand dynamic properties particularly is still 
lacking.  
 The elegant theory of Kirkwood and Buff can be used to explain many aspects of 
static properties 1 but the same is not available for the dynamical properties. This is 
somewhat surprising, given the fact that the dynamic properties in a binary mixture 
show exotic features which pose interesting challenges to theoreticians. Among them 
the extrema observed in the composition dependence of excess viscosity 2,3, the 
anomalous viscosity dependence of the rotational relaxation time 4 and the 
heterogeneous dynamics near glass transition are certainly the most important ones. 
Highly non-exponential solvation dynamics has been observed in binary dipolar 
mixtures 5–7. In recent years, a large number of studies have been devoted to glass 
transition and glassy behaviour in binary mixture on Kob–Andersen model 8,9 but with 
a single composition xA = 0⋅8 and xB = 0⋅2 10,11. None of these studies has addressed the 
well-known anomalous composition dependence. 
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 In a binary mixture, there is a choice of three different interactions, two length scales 
and two different masses. A combination of all these different parameters gives rise to 
several microscopic time scales in the system. Thus the equilibrium and dynamic 
properties in these systems are considerably different from that of an one component 
system. In addition to the multiple time scales, binary mixtures have interesting 
relaxational dynamics which are controlled not only by density and momenta relaxation 
but also by the composition fluctuation, which plays an important role. This is 
particularly true when interaction energies between the two constituents and also the 
sizes differ significantly. If the free energy cost of composition fluctuation is not very 
large then it becomes a convenient channel for stress and other relaxation. The 
composition fluctuation can also be rather slow as it involves exchange of atoms. 
Given the diversity present in the system it is naive to expect any simple theory to 
explain the anomalies present in a binary mixture. In fact, very little understanding of a 
binary mixture is possible by studying a one-component system.  
 In this article we will address the above mentioned anomalies present in the binary 
mixture. In addition to this we will also present a study of the probability of 
composition fluctuation in a binary mixture. To capture the various aspects of composi- 
tion dependence of viscosity, we have introduced two new models (subsequently called 
model I and model II). Model I is of attractive or structure-making kind owing to the 
very strong interaction between two different components of the binary mixture 
whereas model II is of repulsive or structure-breaking kind as the different components 
have very little interaction between themselves. We carried out mode coupling theory 
(MCT) calculation and NVE (constant number N, volume V and energy E) and NPT 
(constant number N, pressure P and temperature T) simulation on the two above 
models to show that even the two very simple models above can contain the anomalous 
composition dependence of viscosity. The composition fluctuation is studied from 
NVE molecular dynamics simulation results. NPT molecular dynamics simulation of 
Gay–Berne ellipsoids in a Lennard–Jones binary mixture is performed to study the 
anomalous viscosity dependence of the orientational relaxation 12. We showed that the 
orientational relaxation time has a re-entrant viscosity dependence for different compo- 
sition which indicates in a dramatic fashion that viscosity is not an unique determinant 
of relaxation time. A similar system of Gay–Berne ellipsoids in a binary Lennard-Jones 
mixture is used to study the heterogeneous orientational dynamics 13. The parameters in 
the binary system in this study are the same as Kob–Andersen model. In this system at 
high pressure the orientational relaxation dynamics is indeed heterogeneous.  
 Organization of the rest of the paper is as follows. In §2, we address the non-ideality 
in the composition dependence of viscosity in a binary mixture and also show the 
correlation between excess volume and excess viscosity. In §3, the probability 
distribution for composition fluctuation is presented. In §4, anomalous viscosity 
dependence of orientational correlation is discussed. Section 5 is devoted to the study 
of heterogeneous dynamics in orientational relaxation in supercooled liquids. The 
article is concluded with a brief discussion in §6. 

2. Non-ideal composition dependence of viscosity: Correlation between excess 
viscosity and excess volume 

It is generally believed that the total viscosity increases on mixing if the two different 
components of a binary mixture attract each other and decreases when the different 
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ingredients of the mixture repel each other. In a real mixture, an observed property P is 
often very different from its predicted ideal value Pid given by 14, 
 

Pid = xA PA + xBPB, (1) 
 

where xA and xB are the mole fractions and PA and PB are the values of the property P 
of the corresponding pure (single component) liquids. Now we define the 
corresponding excess quantity Pexcess as, 
 

Pexcess = P – Pid. (2) 
 

These quantities, i.e. P and Pexcess can be any dynamic or static quantities such as 
viscosity (η), specific heat, volume etc. Departure from (1) is attributed to the specific 
interaction between the two components of the mixture. While the reason for this 
deviation is often discussed in terms of the above mentioned attraction or repulsion 
between the constituents, quantitative understanding of these phenomena from 
microscopic theory has remained largely incomplete. In order to address this problem, 
we constructed two different binary mixture models (referred to as model I and model 
II) in which the strength of the solute–solvent interaction is varied by keeping all the 
other parameters unchanged. All the three interactions are described by either the 
Lennard–Jones or the modified Lennard–Jones potential. In model I, specific structure 
formation between solute and solvent molecules is mimicked by stronger solute–
solvent attractive interaction (εAB = 2⋅0) than that between solvent–solvent (εAA = 1⋅0) 
and solute–solute (εBB = 0⋅5) interactions. The second model (model II) involves 
structure-breaking by weak solute–solvent interaction (εAB = 0⋅3). These two models 
are perhaps the simplest models to mimic structure-making and structure-breaking in 
binary mixtures. For convenience, we denote the solvent molecules as A, and the solute 
molecules as B. In both the models, A and B have the same radii and the same masses. 
In this section, we carry out both MCT calculation and extensive NVE and NPT 
molecular dynamics simulations to evaluate the non-ideality in the composition 
dependence of viscosity and we have also established the correlation between excess 
volume (Volexcess) and excess viscosity (ηexcess) throughout the composition range for 
both the models. Note that the latter part needs the simulation to be carried out through 
the NPT ensemble method as NVE simulation does not allow volume fluctuation.  

2.1 Basic definitions 

In this subsection, we describe the outlines of basic microscopic expressions of 
viscosity. This also gives us the opportunity to explain the expressions that appear in 
the theoretical formulation in this section later. The microscopic expression for the 
time-dependent shear viscosity is formulated in terms of stress autocorrelation function 
and is given by 15,16, 
 

η(t) = (1/VkBT) 〈σxz(0)σxz(t)〉, (3) 
 

where σxz is the off-diagonal element of the stress tensor given by, 
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Here Fj
z is the z-component of the force acting on the jth particle and the corresponding 

position of the jth particle is xj, pj
z is the z-component of the momentum of the jth 

particle, m being the mass of the particle. N is the total number of particles which is 
also equal to NA + NB. Here NA is the number of solvent particles and NB is the number 
of solute particles present in the mixture. High frequency shear modulus, known as G∞, 
is equal to the zero-time stress autocorrelation function 15,16, 
 

G∞ = (1/VkBT) 〈(σxz(0))2〉, (5) 
 
and finally the frequency dependent viscosity is obtained by Laplace transforming η(t), 
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Experimentally observed viscosity is given by the zero frequency limit of η(z). 

2.2 Formulation of the mode coupling theory 

Any formulation of the mode coupling theory (MCT) starts by separating the fast short-
time decay from the slow long-time decay of the relevant time correlation function 
(TCF). The short-time decay is assumed to occur from a few body (mainly binary) 
interactions whereas the long-time decay is assumed to occur from coupling of the TCF 
to the binary product of the slow collective modes. Thus the expression for the 
viscosity can be decomposed into two parts and written as  18,19 
 

η(t) = ηshort(t) + ηcollective(t). (7) 
 
Thus, central to the mode coupling theory development of any time correlation function 
is this assumption of the separation of time scales between the fast initial decay and the 
slow long-time decay. The robustness of a mode coupling theory calculation actually 
depends critically on the accurate evaluation of the short time part 17. Not only does the 
short time part (often called the ‘bare’ term) often contribute about 50% to the value of 
the transport coefficient (here viscosity), but also determines the magnitude of the 
contribution of the long-time part. In fact, a central ingredient of both the short- and the 
long-time contributions is the static correlation functions. The short-time contribution, 
often referred to as the binary term, is assumed to be given by a Gaussian 
approximation. The rational for this assumption comes from the observation that only 
the even powers of time (t) appear in the short-time expansion of η(t) and collective 
term contribution starts as t4. So the t2 term contribution to binary viscosity can be 
approximated as a Gaussian function and can be written as 18–20, 
 

ηbin(t) = G∞exp(–t2/τη
2), (8) 

 
where τη, appearing in the above expression, can be determined by the second 
derivative of η(t). For pure liquids, calculations of binary terms have been reported by 
Balucani 21 and also by Bhattacharyya and Bagchi 17,22. The expression of the infinite 
frequency shear modulus, G∞, is given with the help of (4) and (5),  
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where, i, j = 1 indicate (A) particles and i, j = 2 denote (B) particles. Thus, ρ1 is the 
number density for the solvent particles and ρ2 denotes the same for the solute 
particles. gij(r) is the partial radial distribution function of the particles labeled i and j. 
Note that vij includes three different interaction potentials present between the solute 
and the solvent particles. By using (8), the expression for τη can be written as, 
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Expression of mixη&& (t = 0) is complicated and given elsewhere 23. 
 The collective or mode coupling contribution to viscosity has been evaluated by 
Bosse et al 24 and further developed by Geszti 25. In this approach one starts with the 
general time correlation function expression for the shear viscosity in terms of the 
transverse current. One starts with a Mori-type rephrasing of the Green–Kubo formula 
for the shear viscosity. Thus the expression for the viscosity can be written as, 
 

∫
∞

→→
−=

0

2

2

00
)).(|)exp(|)((dlimlim qq xx

q
QLjtiQLQTQLjt

Vq

m
εη

ε
 (11) 

 
In the above equation, q has been considered to be aligned along the z direction. L is 
the Hermitian–Liouville operator, Q = 1–P, where P is the projection operator which 
projects on to the chosen dynamical variable Aα. Aα is the set of slow variables which 
consists of three current densities and two particle densities for both the components 
which constitute the binary mixture. After a few steps of calculation, the MCT 
expression of viscosity takes the form below 23, 
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where, Sii(q) is the static structure factor and )().()( qSqSqS iiiiqii ′=′ ∂

∂  has been 
obtained using soft mean spherical approximation (SMSA) closure 26. Fij(q, t) is the 
dynamic input parameter and in this case the different Fij(q, t) are calculated from time-
dependent density functional theory 27. Note that the lower limit of the time integration 
has been changed from zero to τη to take out all the contributions of the order t2 as the 
collective contributions are expected to start as t4. τη is the characteristic time for 
Gaussian decay that appeared in the expression of binary viscosity in (8). The total 
mode coupling contribution to the viscosity is obtained by summing together all the 
ηρ iρ j terms, 
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2.3 Simulation details 

We have carried out a series of both NVE and NPT simulations23,28,29 of binary 
mixtures by varying the solute mole fraction from 0 to 1. Our model binary systems 
consist of a total of 500 (solvent (A) + solute (B)) particles. In case of NVE simulation,  
we used the Lennard–Jones 12-6 potential, 
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whereas in case of NPT simulation, interaction between any two particles is given by 
the modified Lennard–Jones potential which sets a cutoff radius rc, outside which the 
potential energy is zero. The particular form of the potential is given by 30, 
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where the cutoff distance rc in this particular case has been taken as equal to 2⋅5σ. Use 
of the above potential form takes care of the fact that both potential and force are 
continuous at the cutoff distance. i and j in (14) and (15) denote two different particles. 
We set the diameter (σ) and mass (m) of both the solute and the solvent to unity, for 
simplicity. The solute–solvent interaction strength lies in the potential well depth εAB, 
where A and B represent the solvent and solute particles respectively. Throughout this 
study we keep the interaction strength εAA = 1⋅0ε, (solvent–solvent), εBB = 0⋅5ε (solute–
solute). We dealt with two very different specific solvent–solute interaction strength 
values, referred as model I and model II. In model I, εAB = 2⋅0ε and in model II, 
εAB = 0⋅3ε. While the former accounts for the situation in which the solute and solvent 
particles attract each other more strongly than they do amongst themselves, the latter 
describes the opposite scenario. Henceforth we will be referring to the situations in 
which εAB = 2⋅0 and εAB = 0⋅3 the attractive and repulsive respectively. We set the 
reduced temperature T* (= kBT/ε) as 1⋅0 in model I and 1⋅24 in model II. After many 
trial runs to verify the existing results on viscosity 31 of one-component liquids, we 
selected a time step ∆t* = 0⋅002τ for model I and ∆t* = 0⋅001τ for model II for the 
integration of the Newtonian equations of motion. The scaled time has been denoted as 
τ = σ(m/ε)1/2. We have dealt with eight different solute compositions, namely 0⋅0, 0⋅1, 
0⋅2, 0⋅4, 0⋅6, 0⋅8, 0⋅9 and 1⋅0. For each solute composition we have equilibrated the 
system up to 1⋅5 × 105 time steps. Simulations have been carried out for another 2 × 105 
production steps after equilibration in NVE simulation and 106 production steps in case 
of NPT simulation, during which the stress tensor has been calculated. In case of NPT 
simulation, pressure is kept constant at 2⋅0 (ε/σ3) by Anderson's piston method 32, while 
in the case of temperature, a damped oscillator method has been adopted which keeps 
temperature constant at each and every step 33. We have done three different simulation 
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runs for each composition point where each of the last two runs has been started from 
the particle positions and velocities stored in the last time step of the previous 
simulation. We have also calculated the radial distribution function in each case to 
make sure that the clustering or phase separation (especially among similar species) is 
avoided. 

2.4 Results and discussion 

Figure 1 depicts the non-ideality of viscosity obtained from both NVE simulation and 
mode coupling theory with respect to solute (B) composition, for both the models. 
Though the agreement between theory and simulation is certainly not perfect, the 
trends are similar in both the calculations. Note that the theoretical calculation does not 
use any simulation data as input or any adjustable parameter either; thus theory and 
simulation provide tests independent of each other which is important for binary 
mixtures. 
 Figures 2 and 3 show the correlation between excess volume and excess viscosity 
given by (2). The results of these figures are drawn out from NPT simulation as NVE 
simulation does not allow volume change. 
 Figure 2a shows the positive deviation of viscosity and figure 2b the negative 
deviation of volume, from their ideal values for model I. Figure 3a, on the other hand, 
shows negative deviation of viscosity and figure 3b the positive deviation of volume 
for model II. Note that the correlation between excess volume and excess viscosity is 
always opposite and in the two different models they manifest in opposite ways. The 
results presented in figures 1–3 can be partly understood by analysing the microscopic 
structure. In figures 4a and b we plot all the partial radial distribution function (gAA(r), 
gBB(r) and gAB(r)) obtained from the NPT simulation, for models I and II respectively. 
As the solute–solvent interaction strength affects the structure surrounding a  
 

 
Figure 1. The composition dependence of viscosity obtained from NVE MD 
simulations (symbols) and mode coupling theory (lines) for both the models. Filled 
(open) circles show simulation results for model I (model II). The lines show the 
theories. 



A Mukherjee et al 400 

 
Figure 2. Composition dependence of excess viscosity and excess volume for 
model I. In (a), the calculated excess viscosity (ηexcess) is plotted against solute 
composition (xB) for model I. In (b), the variation of excess volume (Volexcess) with 
solute composition (xB) is plotted for the same model. Solid lines are just for 
guidance to the eye. 

 
 
solute/solvent to a great extent 34–36, the above observed features are reflected in the 
increment of correlation among the unlike species, gAB(r), in figure 4a for model I 
while the reverse is seen in figure 4b for model II. We can refer to such behaviour as 
“structure-forming” in model I and “structure-breaking” in model II. 
 The above figures can explain the complex phenomena of non-ideality in dynamic 
properties from very simple microscopic models which explain that the key to the non-
ideality of mixtures belongs to the nature of interaction between the different species 
constituting the mixture. 
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Figure 3. Composition dependence of excess viscosity and excess volume for 
model II. In (a), the excess viscosity (ηexcess) is plotted against solute composition 
(xB) for model II. In (b), excess volume (Volexcess) is plotted against the solute 
coposition (xB) for model II. As in figure 2, solid lines are only for eye guidance. 

 

3. Composition fluctuation in non-phase separating binary mixtures 

Composition fluctuations in binary mixtures play important role both in equilibrium 
and dynamic behaviour 37–40. The study of composition fluctuation may also provide 
useful information in understanding the origin of the strong non-ideal behaviour in the 
composition dependence of binary mixtures 23. In this section, we present molecular 
dynamics simulation analysis of composition fluctuation in model I, which has been 
described in last section. In this model, both the species (A and B) have the same mass 
and diameter but different inter-molecular interactions, which are modelled by the 
Lennard–Jones potential. The interaction parameters are: εAA = 1⋅0, εBB = 0⋅5,
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Figure 4. Radial distribution function for models I and II. All the partial radial 
distribution functions gAA (solvent–solvent), gAB (solvent–solute) and gBB (solute–
solute) are plotted for 0⋅4 solute composition; (a) shows the results for model I and 
(b) shows the same for model II. In both cases, dashed lines show gAA, short dashed 
lines show gBB and solid lines show gAB. 

 
 
εAB = 2.0. We find that the composition fluctuation is nearly Gaussian for both the 
species, the width and the height of the peak being determined by the composition. 

3.1 Simulation details 

The simulations methodology remains nearly the same as that described in the previous 
section (for the micro-canonical NVE ensemble) except for the calculation of the 
composition fluctuations 40. The calculation of composition fluctuation has been 
incorporated into the simulation in the following manner. Nine hypothetical spheres of 
radius 2σ have been incorporated into the simulation box. After the equilibration 
(which is carried out in the usual manner as mentioned in the previous section), at each 
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time step the total number of both the components (A and B) present in each sphere is 
calculated separately. This has been done by calculating the distance of each particle 
from the centre of the sphere. After the execution of simulation, overall average of 
components A and B is determined by, 
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where the summation is over the number of the spheres Ns, 

A
iN  representing the 

number of A particles in the ith sphere and N  denoting time-averaging over a fixed 
sphere. 〈B〉 is determined in a similar way. Then, fluctuation in number R

AN  in a fixed 
sphere of radius R is defined by, 
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and similarly for species B. 

3.2 Probability distribution of composition fluctuation 

Figure 5 shows the normalized probability distributions of the composition fluctuation 
for both the components at xB = 0⋅6 in the sphere of 2σ radius. Figure 5a shows the 
composition fluctuation of component A, while that of B is shown in figure 5b. In both 
the figures the simulation results are depicted by the histograms. The full line 
represents the Gaussian fit. As can be seen from these figures, the probability for the 
composition fluctuation is nearly Gaussian, centred around the average value of the 
respective components in both the cases. Nevertheless, on going from the minority 
species (A) to the majority species (B), not only does the peak height decreases but the 
peak also becomes broader (as can be seen from the figures 5a and b). This variation in 
fluctuation is expected. Similar results have been obtained at other compositions. In 
figure 5, the average number of components A and B are 〈A〉 = 11⋅39 and 〈B〉 = 17⋅00, 
respectively. Thus, the local number density fluctuation is rather large. This could be 
the reason for the non-ideality in viscosity. We recall that a large fluctuation in shear 
stress was also obtained from microscopic calculation, using (5). However, irrespective 
of the fluctuation in A and B, the average number of all the particles present in a sphere 
remains nearly constant (28⋅4) for all the compositions. Thus, even for a sphere of 
radius R = 2σ, total density fluctuation is small. 

4. Re-entrant orientational relaxation in binary mixtures 

Conventionally, the rotational diffusion (DR) coefficient of a solute is given by the 
well-known Debye–Stokes–Einstein (DSE) relation, 
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Figure 5. Normalized probability distribution of composition fluctuations in 
model-I binary mixtures at 0⋅6, B composition; (a) shows the composition 
fluctuation of A components within a sphere of radius 2σ; (b) shows the same for 
the B components. In both the figures, the histogram denotes simulation results and 
the full line represents the Gaussian fit. 
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where kBT is the Boltzmann constant times the temperature (T), η is the viscosity of the 
liquid medium and rs is the radius of the molecule. Experimentally, one measures the 
orientational time correlation function Cl(t) (l is the rank of the spherical harmonic 
coefficients), with l = 1 or 2. Now if the Debye rotational diffusion model is assumed, 
the relaxation time τlR is given by, 
 

,])1([ 1−+= RR Dlllτ  (19) 

 
where DR is the rotational diffusion coefficient. Thus, according to the hydrodynamic 
theory the viscosity is a unique determinant of the rotational relaxation time. As 
discussed in the introduction, there exists a multiple time scale in a binary mixture. 
Given the diversity present in the system it is naive to expect a simple proportionality 
between τlR and η to hold. 
 The breakdown of the hydrodynamic theory was dramatically exhibited by Beddard 
et al 4. They used the picosecond fluorescence depolarization technique to study the 
rotational relaxation time of the dye cresyl violet in ethanol–water mixture by varying 
the ethanol–water composition. They reported different rotational relaxation times in 
solutions at the same viscosity but different compositions. 
 This re-entrant type of behaviour of the orientational relaxation time when plotted 
against viscosity is yet to be explained. Although the viscosity itself in a binary mixture 
is known to exhibit non-ideal behaviour (as has been discussed in the previous section) 
it should be noted that the composition dependence of the orientational relaxation time 
cannot be understood only in terms of this non-ideality in viscosity. Re-entrance is 
strongly dependent on the specific interaction of the solute with the solvents as has 
already been discussed by Beddard et al 4. The role of specific interaction in the 
orientational dynamics has often been discussed and the effect has been included in the 
DSE relation by changing the boundary condition 41,42. However, to the best of our 
knowledge, a detailed study of the rotational dynamics in a binary mixture has not been 
carried out before. 
 Extensive MD simulations at constant pressure (P), temperature (T) and total number 
of molecules (N) have been carried out to study the orientational relaxation of prolate 
ellipsoids in several binary mixtures. We find that the orientational relaxation time of 
the ellipsoid when plotted against the solvent viscosity, does indeed show re-entrance. 

4.1 Systems and simulation details 

Here we present molecular dynamics NPT simulations of rotational correlation time τ2R 
of tagged, isolated, Gay–Berne ellipsoids 43 in a binary mixture of Lennard–Jones 
spheres. The two species of the binary mixture are denoted by (A) and (B), as in the 
previous sections. The composition of the binary mixture is varied from 0 to 1, where 
composition ‘0’ denotes all (A) particles and composition ‘1’ denotes all (B) particles. 
The total number of molecules in the system is 504, where there are 4 ellipsoids which 
are placed far from each other and 500 solvents which includes both (A) and (B) types 
of molecules. 
 The interaction between the particles is modelled by different potentials. The 
interaction between the spheres in the binary mixture is given by the Lennard–Jones 
12-6 potential, 
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where i and j denote two different particles which can be both (A) or both (B) or one 
(A) and the other (B).  
 Interaction energy between two ellipsoids with arbitrary orientations is assumed to 
be given by the Gay–Berne potential 43 
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where 21 ˆ,ˆ uu are the axial vectors of the molecules 1 and 2 respectively. r̂  is the vector 
along the intermolecular separation r = r2 – r1, where r1 and r2 denote the centres of 
mass of ellipsoids 1 and 2 respectively. )ˆ,ˆ,ˆ( 21 uurσ and )ˆ,ˆ,ˆ( 21 uurε  are the orientation-
dependent range and strength parameters respectively. σ and ε depend on the aspect 
ratio κ which is the ratio between the semi-major and the semi-minor axes of the 
ellipsoids. Finally, the interaction between a sphere and an ellipsoid is accounted for by 
a modified GB–LJ potential as given below 43,45 
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where E denotes the ellipsoids and i can be either (A) or (B).  
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where θ is the angle between the major axis of the ellipsoid and the vector joining the 
centres of the sphere and the ellipsoid. 
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L is the major axis of the ellipsoid and b is the minor axis of the ellipsoid. 
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 All the quantities in the simulation were scaled to appropriate units. The density by 
3

BB
−σ  the temperature by εAA/kΒ and the time by 2/1

AA
2
BB )/( εσm  – the scaled 

quantities are denoted by ρ*, T* and t* respectively. 
 All the simulations have been carried out at P = 1⋅0 and T = 1⋅0. The system 
parameters corresponding to the interaction are, εBB = 0⋅7, εAA = 1⋅0, εAB = 1⋅5, 
εEB = 1⋅4 and εEA = 0⋅3, while that of the masses are, mA = 0⋅33, mB = 1⋅0, mE = 1⋅0, and 
the distances are σB = 1⋅0, σA = 0⋅66, a = 10 and L = 2⋅0. 
 The time step ∆t used in the simulation is 0.0005 (τ). The system was equilibrated 
for 1⋅5 × 105 time steps and after that the averages were obtained for another 2 × 105 
time steps. In each case we have executed at least five independent simulations and 
results presented are the averages over all the five different simulation runs. 

4.2 Results and discussions 

Figure 6 shows the re-entrant behaviour. Here the rotational relaxation time is plotted 
against the viscosity by varying the composition. The maximum of the viscosity is 
obtained at composition 0⋅4 where its value is 2⋅66 times the value at χB = 0. The 
rotational relaxation time varies by a factor of 1⋅5. The essence of re-entrance is nicely 
captured in figure 6. 
 Note that although figure 6 has the same qualitative features as the experimental 
plot 4, there exist some differences in the intrinsic details. The details of the plot can be 
easily alerted by tuning the interactions. 
 
 

 
Figure 6. Reduced orientational relaxation time, τ2R, plotted against the reduced 
viscosity of the binary mixture, η, is shown by the filled circles. τ2R shows a re-
entrance. The solid line is a guide to the eye. The compositions of the solvent (B) 
are 0⋅04, 0⋅08, 0⋅15, 0⋅2, 0⋅4, 0⋅6, 0⋅8, and 1⋅0, where the direction of the arrows 
shows the increasing composition of (B) particles. The study is performed at 
T* = 1⋅0 and P* = 1⋅0. 
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Figure 7. Composition dependence of the reduced viscosity is shown by the filled 
circles. The solid line is a guide to the eye. The dashed line shows the ideal 
behaviour of viscosity in a binary mixture. The study is performed at T* = 1⋅0 and 
P* = 1⋅0. 

 
 In figure 7 we have plotted the viscosity against the composition. The viscosity 
shows non-ideal behaviour. Ideal behaviour is given by the dotted line. The plot clearly 
shows that the viscosity in the binary mixture does show non-ideal behaviour and this 
has already been discussed at length in §2.  
 We next investigate whether the non-ideality in viscosity alone can reproduce the 
observed re-entrance in orientational relaxation time. In figure 8 we have shown the 
ratio of τ2R(χ)/τ2R (χ = 0⋅04) against the ratio η(χ)/η (χ = 0⋅04). The dashed line is the 
result obtained from the DSE relation where τ2R is calculated from (18) and (19), by 
using the viscosities plotted in figure 7. From the figures, it is obvious that the non-
ideality in viscosity in a binary mixture alone cannot explain the re-entrance. 
 The study here shows that in a system where the solute interacts differently with the 
two different species in a binary mixture, its rotational relaxation depends more on the 
composition than on the viscosity of the binary mixture. Thus, re-entrant type 
behaviour is strongly dependent on the interactions of the solute with the two different 
species making up the solvent. 

5. Heterogeneous dynamics in supercooled liquid 

Recent experiments, simulations and theoretical studies all seem to suggest the 
presence of heterogeneous dynamics in a supercooled liquid 46. This heterogeneity in 
the kinetics is believed to have originated from the free energy landscape with multiple 
minima and maxima 11,47. Although many characteristics of the free energy functional 
have been qualitatively calculated from the q-spin Potts model 48, the connection 
between the dynamics and the free energy landscape is not fully clear. Even the nature 
of the heterogeneity (entropic or density) is not understood yet. 
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Figure 8. The ratio τ2R (χB)/τ2R(χB = 0) against the ratio η(χB)/η(χB = 0) is shown 
by the filled circles. The solid line is an aid to the eye. The dashed line shows the 
plot of the same but here τ2R(χB) is calculated from (18) and (19) of the text using 
the simulated viscosities. The compositions of the solvent are the same as in figure 
6 and the directions of the arrows show the increasing composition of (B) particles. 
The study is performed at T* = 1⋅0 and P* = 1⋅0. 

 
 
 The most direct experimental evidence of the heterogeneous relaxation comes from 
NMR and fluorescence depolarisation studies of the tagged probes in supercooled 
liquids 46. These experiments measure translational and orientational relaxation of the 
probe molecules. The advantages of using the orientational relaxation as a probe of 
heterogeneity are many-fold. First, the orientational relaxation is mostly a local 
phenomenon and thus explores only the local dynamics. Second, the orientational 
relaxation is faster than the density relaxation, therefore the density relaxation and 
orientational dynamics are well-separated in time. 
 We are not aware of any theoretical or computer simulation study of heterogeneity 
by using solute orientational relaxation as the probe. Here we present an NPT–MD 
simulation study of the orientational relaxation of a tagged solute in a model, 
supercooled, binary mixture. The study shows the presence of widely different 
orientational dynamics of solutes at different locations in the same solvent. 

5.1 Simulation details 

Details of simulation are nearly the same as described in the foregoing sections. The 
simulations have been carried out at constant pressure (P), temperature (T), and 
constant total number of particles (N). In the binary mixture let us denote the two 
species as A and B. The total number of molecules in the system are 504, of which 
there are 4 ellipsoids which are placed far from each other and 400 of type A and 100 
of type B solvents. 
 The potentials used in the simulations are the same as presented in the previous 
section, (20)–(26)). The parameters in the binary mixture are chosen such that it 
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represents the Kob–Andersen model 8,9, that is, εAA = 1⋅0, εBB = 0⋅5, εAB = 1⋅5, and 
σA = 1⋅0, σB = 0⋅88, σAB =0⋅8. The ellipsoid–sphere interactions are given by: 
εEB = 1⋅0, εEA = 1⋅0. The masses of the spheres and ellipsoids are all the same. The 
minor and major axes of the ellipsoid are given by b = 1⋅0, and L = 2⋅0. All the 
simulations reported here have been carried out at P = 10⋅0 and T = 0⋅8. The time step 
∆t used to simulate is 0⋅002. The system was equilibrated for 1⋅5 × 105 time steps, after 
which the averages were obtained over another 3 × 106 time steps. 

5.2 Results and discussions 

In figure 9 we plot the orientational time correlation function of the 4 tagged ellipsoids 
located at different regions. The figure clearly shows the presence of heterogeneous 
dynamics in the supercooled liquid as probed by the orientational dynamics of the 
ellipsoids. The initial decay of the orientational time correlation function of all the 4 
ellipsoids (till C2R(t) = 0⋅9), due to their inertial motion, are similar. However, after this 
initial decay, the orientational time correlation functions of all the ellipsoids behave 
differently. OCF of ellipsoid 1 and 4 decays with nearly the same time scale but that of 
particle 2 decays with a slightly longer time scale. On the other hand, the orientational 
time correlation function of ellipsoid 3 seems to saturate after decaying to 0⋅7. This 
implies the existence of 3 different dynamic regions even within such a small system. 
 In order to further investigate the nature of these regions, we have calculated two 
particle radial distribution functions, individually, for all the four ellipsoids. These are 
shown in figures 10a and b. The radial distribution functions show that ellipsoid 3 has  
 
 

 
Figure 9. The orientational correlation function, C2R(t), is plotted against reduced 
time, individually, for 4 ellipsoids. The plot shows the presence of heterogeneous 
dynamics present in the binary mixture, as probed by the orientational dynamics of 
the ellipsoids. The solid line is for ellipsoid 1, the dashed line is for ellipsoid 2, the 
dashed-dot line is for ellipsoid 3 and the dotted line is for ellipsoid 4. The study is 
performed at T* = 0⋅8 and P* = 10⋅0. 
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Figure 10. Radial distribution functions for the 4 ellipsoids; (a) shows the partial 
radial distribution function gEA (ellipsoid–solvent A). The solid line is for ellipsoid 
1, the dashed line is for ellipsoid 2, the dashed-dot line is for ellipsoid 3 and the 
dotted line is for ellipsoid 4; (b) shows the partial radial distribution function gEB 
(ellipsoid–solvent B). Lines denote ellipsoids 1–4 as in figure (a). 

 
 
the maximum number of neighbouring A particles. The B particles surrounding 
ellipsoid 3 are mostly at a distance, r = 1⋅5σ. Thus, the B particles are positioned 
mostly at the tip of the ellipsoid 3. Since the B particle is smaller than the ellipsoid, its 
dynamics takes place at a smaller time scale. On the other hand, the dynamics of the 
larger A particle is much slower than the rotational dynamics of the ellipsoid. As the 
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rotation of the ellipsoid is facilitated when there are more mobile particles on its sides 
rather than at the tips, the presence of more A particles around ellipsoid 3 hinders its 
rotational motion. 
 Thus we can argue that at the pressure and temperature we have studied and within 
1⋅2 ns timeframe, A particle motion is almost frozen while B particles are mobile. This 
is similar to the prediction of Bosse et al 49 who performed a mode coupling theoretical 
calculation of binary mixtures of disparate size and have shown that although the larger 
particles form a glass, the smaller particles remain mobile.  
 The picture might be different for different probes. If the solute is large and massive 
then its timescale of rotation will be large and thus it will probe a more homogeneous 
solvent dynamics. To observe heterogeneity, the time scale of the rotational dynamics 
should be in-between the time scale of the dynamics of A and B. 

6. Conclusions 

In this article we have addressed several aspects of the dynamics of binary mixtures, 
which show exotic behaviour, that have eluded microscopic explanation. We show here 
that by proper modelling and tuning of the interaction parameters, many of these 
properties can be determined from theoretical and simulation studies. 
 Binary mixtures continue to be an area of active research. Although much of the 
recent interest is focused on the ability to model relaxation in supercooled liquids (as 
binary mixtures are good glass formers), we show here that study of composition 
dependence may help in understanding many aspects of the dynamics of binary 
mixtures and may even help in understanding dynamic properties of supercooled 
liquids. 
 The models presented here can be extended in several ways. We are currently 
investigating the relaxation dynamics of a mixture of spheres and ellipsoids. This 
system should retain the diversity of binary mixtures experienced here and in addition, 
incorporate the richness of orientational dynamics. We are also investigating the 
pressure dependence of viscosity and diffusion coefficients. At low to intermediate 
pressures, we find exponential pressure dependence of viscosity and the diffusion 
coefficient. We hope to address these problems in future. 
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